Role of mitochondrial aldehyde dehydrogenase in nitroglycerin-induced vasodilation of coronary and systemic vessels: an intact canine model.

نویسندگان

  • Jian Zhang
  • Zhiqiang Chen
  • Frederick R Cobb
  • Jonathan S Stamler
چکیده

BACKGROUND It has recently been shown that mitochondrial aldehyde dehydrogenase 2 (mtALDH) catalyzes the formation of 1,2-glyceryl dinitrate and nitrite from nitroglycerin (glyceryl trinitrate [GTN]) within mitochondria, leading to production of cGMP and vasorelaxation. However, whether this mechanism operates in the systemic and coronary beds that subserve the antianginal action of GTN is not known. In this study, we address this question in an intact canine model. METHODS AND RESULTS Fourteen healthy mongrel dogs (weight, 20 to 25 kg) were studied. Coronary blood flow and hemodynamics were continuously monitored by a pulse Doppler flow probe implanted around the left circumflex coronary artery and with catheters in left ventricle and aorta, respectively. Each dog was given a 1-mL bolus injection of GTN, sodium nitroprusside (SNP), or adenosine through a catheter in the left atrium before and 30 minutes after infusion of cyanamide (17 mg/kg), an inhibitor of mtALDH. Cyanamide significantly inhibited both the classic dehydrogenase and GTN reductase activities of mtALDH in situ and attenuated the coronary blood flow increase and declines in blood pressure and left ventricular end-diastolic pressure produced by GTN in vivo. In contrast, mtALDH inhibition had no effect on the coronary and systemic effects of SNP and adenosine. CONCLUSIONS Our data suggest that mtALDH contributes to GTN biotransformation in vivo and thus at least partly underlies the antianginal mechanism of drug action. Our findings also highlight the differences in biometabolism of clinically relevant nitrosovasodilators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance.

Recent studies suggest that mitochondrial aldehyde dehydrogenase (ALDH-2) plays a central role in the process of nitroglycerin (glyceryl trinitrate, GTN) biotransformation in vivo and that its inhibition accounts for mechanism-based tolerance in vitro. The extent to which ALDH-2 contributes to GTN tolerance (impaired relaxation to GTN) and cross-tolerance (impaired endothelium-dependent relaxat...

متن کامل

The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles.

Nitroglycerin (glyceryl trinitrate; GTN) is the most prominent representative of the organic nitrates or nitrovasodilators, a class of compounds that have been used clinically since the late nineteenth century for the treatment of coronary artery disease (angina pectoris), congestive heart failure and myocardial infarction. Medline lists more than 15 000 publications on GTN and other organic ni...

متن کامل

Mitochondrial aldehyde dehydrogenase mediates vasodilator responses of glyceryl trinitrate and sodium nitrite in the pulmonary vascular bed of the rat.

It has been reported that mitochondrial aldehyde dehydrogenase (ALDH2) catalyzes the formation of glyceryl dinitrate and inorganic nitrite from glyceryl trinitrate (GTN), leading to an increase in cGMP and vasodilation in the coronary and systemic vascular beds. However, the role of nitric oxide (NO) formed from nitrite in mediating the response to GTN in the pulmonary vascular bed is uncertain...

متن کامل

Measuring the Nitroglycerine-Induced Vasodilation in Carotid Arteries

Introduction: Nitroglycerin is a fast-acting drug that rapidly dilates coronary arteries and thus increases blood flow to these vessels, and increases the blood flow through the lateral vessels to low blood areas. It also reduces both end diastolic pressure and volume of the left ventricular. However, the effect of nitroglycerin on the circulation hemodynamic is not known. Caro...

متن کامل

Oxidative inhibition of the mitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance in human blood vessels.

OBJECTIVES We tested the hypothesis of whether an inhibition of the nitroglycerin (GTN) bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) contributes to GTN tolerance in human blood vessels. BACKGROUND The hemodynamic effects of GTN are rapidly blunted by the development of tolerance, a phenomenon associated with increased formation of reactive oxygen species (ROS). Recent st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 110 6  شماره 

صفحات  -

تاریخ انتشار 2004